C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name : Topology Subject Code : 5SC01TOP1 Semester : 1 Date : 19/03/2019

Branch : M.Sc. (Mathematics) Time : 2:30 To 5:30 Marks : 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions	(07)
	a.	Define : Co-finite topology.	(01)
	b.	What do you mean by countable set?	(02)
	c.	Write a difference between metric space and topological space.	(02)
	d.	What do mean by hereditary property?	(02)
Q-2		Attempt all questions	(14)
	a.	Define :Co-countable topology	(02)
	b.	If $X = \{ a, b, c, d, e \}$ and	(06)
		$\tau = \{ \emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \}$, then show that (X, τ) is topological space. Also write all the τ -closed subsets of X.	
	c.	What do you mean by τ –closed sets ? show that arbitrary intersection of	(06)
		τ –closed sets is τ –closed.	
		OR	
Q-2		Attempt all questions	(14)
	a.	Define :Metric topology	(02)
	b.	What do you mean by subspace topology ? If $Y = [-2,2)$ is a subspace of <i>R</i> . Check whether the set $A = \{x/0 < x < 1\}$ is open in <i>Y</i> .	(06)
	c.	Define closure of a set. Let A be a subset of topological space X and A' be the set of all limit points of A. Then prove that $\overline{A} = A \cup A'$.	(06)
Q-3		Attempt all questions	(14)
	a.	Define : T_2 Space.	(02)
	b.	State and prove pasting Lemma.	(06)
c.		Let X and Y be topological spaces and f: $X \rightarrow Y$ then prove that following are	(06)
		equivalent	
		(1) I is continuous.	

		(ii) For every subset A of X, $f(\overline{A}) \subseteq \overline{f(A)}$.	
		(iii) For every closed set B of Y, the set $f^{-1}(B)$ is closed in X	
		OR	
Q-3		Attempt all questions	(14)
	a.	Define : limit point of set.	(02)
	b.	Prove that product of T_2 space is a T_2 space.	(06)
	c.	What is uniform convergence of sequence of functions also give one example of	(06)
		sequence which is convergence but not uniform convergence.	
		SECTION – II	
Q-4		Attempt the Following questions	(07)
	a.	What do you mean by path connected set?	(01)
	b.	Define : Continuous function.	(02)
	c.	What is closure of Q in usual topology on R?	(02)
	d.	Every T_1 space is T_0 Space, justify the statement.	(02)
Q-5		Attempt all questions	(14)
	a.	Describe Connected space.	(02)
	h	What do you mean by topological property ? Prove that connectedness is	(06)
	D.	topological property.	
	c.	Prove that every path connected set is connected.	(06)
		OR	
Q-5		Attempt all questions	(14)
-	a.	State Tychonoff theorem.	(02)
	b.	Prove that closed subspace of a locally compact space is locally compact.	(06)
	c.	Prove that every compact T_2 space is normal.	(06)
Q-6		Attempt all questions	(14)
-	a.	State Urysohn's lemma.	(02)
	b.	Prove that every compact subspace of T_2 space is closed.	(06)
	c.	What do you mean by bounded set ? Show that every compact subspace of a	(06)
		metric space is bounded.	
		OR	
Q-6		Attempt all Questions	(14)
	a.	Define: Compact space.	(02)
	b.	State and prove Heien-borel theorem.	(06)

c. Prove that continuous image of a compact space is compact. (06)

